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Abstract. Tsetse flies are the primary vector for African trypanosomiasis, a neglected tropical disease that

affects both humans and livestock across the continent of Africa. In 1973 tsetse were estimated to inhabit

22% of Kenya; by 1996 that number had risen to roughly 34%. Efforts to control the disease are hampered

by a lack of information and costs associated with the identification of infested areas. To aid control efforts

we have constructed the Tsetse Ecological Distribution Model (TED Model). The TED Model is a raster

based dynamic species distribution model that predicts tsetse distributions at 250 m spatial resolution,

based on habitat suitability and fly movement rates, at 16-day intervals. Although the TED Model can be

parameterized to any tsetse subgenus/species requirements, for the purpose of this study the TED Model

was parameterized to identify suitable habitat for Glossina subgenus Morsitans. Using the TED Model we

have identified where and when Glossina subgenus Morsitans populations should be constrained by

unfavorable ecological conditions to particular parcels of suitable habitat. It is our hope that by utilizing the

predicted locations of tsetse reservoirs and refugia, control efforts will be better able to target tsetse

populations when they are spatially constrained, thus maximizing limited available resources.
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INTRODUCTION

African trypanosomiasis and the tsetse fly

African trypanosomiasis, otherwise known as

sleeping sickness in humans and nagana in

livestock, is caused by a single-celled protozoan

(trypanosome) and is a neglected tropical disease

(Yamey 2002, Hotez et al. 2006, 2007, WHO

2009). Trypanosomiasis is generally lethal if left

untreated, and in regions where the disease is
present, livestock productivity decreases by 20%

to 40% (Hursey 2001, Rogers and Randolph
2002), costing livestock producers and consumers
in Sub-Saharan Africa an estimated $4.5 billion
annually (Oluwafemi 2009). Due to the trypano-
somes’ use of long-lived wild ungulate popula-
tions as natural hosts (e.g., cape buffalo, warthog,
bushbuck), most modern control efforts have
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focused on the disease vector, the tsetse fly, genus
Glossina (Jordan 1986, Grant 2001).

Tsetse are diurnal biting flies between 6–14
mm in length and naturally feed on wild
ungulate and ruminant populations (Pollock
1982a, b). Efforts to control tsetse have been
chronically hampered by identification of infest-
ed areas, reinvasion of tsetse into previously
controlled regions, and substantial costs associ-
ated with the means of control (Brightwell et al.
1992, Williams et al. 1992, Hargrove 2003,
Maitima et al. 2007). Traditionally, tsetse distri-
butions have been aggregated and mapped into
contiguous ‘‘fly belts,’’ which can contain one or
more tsetse species with boundaries set by a wide
variety of physical, biological, and anthropogenic
barriers (Ford 1971, Ford and Katondo 1977,
Rogers and Robinson 2004, Muriuki et al. 2005).
Fly belts, although useful in delineating where
tsetse were historically found, are of limited use
to control efforts due to the lack of information
on the likelihood and timing of tsetse presence.
More recent attempts to map tsetse distributions
have implemented spatial modeling techniques,
which have succeeded in producing maps with
both higher spatial resolutions than the fly belt
maps, and estimates on the probability of tsetse
presence (e.g., Rogers and Williams 1994, Gilbert
et al. 2001, Wint 2001). Although an improve-
ment over the fly belt maps, the modeled
predictions thus far have provided little infor-
mation about intra- and inter-annual fluctuations
in tsetse distributions, despite numerous studies
that discuss such phenomenon (e.g., Austen and
Hegh 1926, Nash 1933, Bursell 1956, Brightwell et
al. 1992, Hargrove 2001, Odulaja et al. 2001, Bett
et al. 2008).

To aid control efforts, we constructed the
Tsetse Ecological Distribution Model (TED Mod-
el), which is a dynamic species distribution
model that uses remotely sensed climate and
land cover data, combined with fly movement
rates, to map and track fluctuations in tsetse
distributions. By using the TED Model we
identified the season, approximate date, and
geographic location of tsetse populations con-
strained to ecologically suitable habitat.
Throughout the rest of this paper, the parcels of
suitable tsetse habitat in which tsetse populations
are predicted to survive seasonal fluctuations in
temperature and moisture will be referred to as

tsetse reservoirs; habitat deemed crucial to long
term tsetse survival will be called tsetse refugia.
It is our hope that by utilizing the predicted
locations of tsetse reservoirs and refugia, control
efforts will be better able to target tsetse
populations when they are spatially constrained,
thus maximizing limited available resources.

The tsetse fly in Kenya
The geographic distribution of tsetse is limited

to Sub-Saharan Africa, where they infest 8.5
million km2 in 37 countries (Allsopp 2001). This
study focuses on Kenya (582,650 km2), where in
1973 tsetse were estimated to infest 22% of the
country (129,229 km2) (Ford and Katondo 1977).
By 1996, the amount of Kenya estimated to be
infested with tsetse had risen to approximately
34% (202,774 km2) (KETRI 2008). In addition to
the potential change in tsetse distributions within
the country, Kenya also contains a variety of
physiographic and climatic regions (e.g., cool
moist highlands above 1,500m elevation, near-
desert conditions in the north, and a warm
humid coastal plain) and four distinct seasons
(the long and short rains, and the hot and cool
dry seasons).

As described in Gatebe et al. (1999) and
Awange et al. (2008), seasonal climate conditions
in Kenya are primarily driven by the oscillation
of the Intertropical Convergence Zone (ITCZ)
over the equator. The long rains coalesce as the
ITCZ moves north over the equator and last from
early March to late May. Following the long rains
is the cool dry season, which lasts from early
June to late October, and ends with the onset of
the short rains in late October or early November.
The short rains coalesce as the ITCZ moves to the
south of Kenya in late October, can last until late
December and produce one third of the annual
precipitation in Kenya. Following the short rains
is the hot dry season, named for having average
temperatures warmer than that of the longer cool
dry season. At the end of the hot dry season in
late February, the long rains return and the
seasonal cycle begins anew. Although the general
description of the four seasons in Kenya portrays
the timing, duration, and climate conditions as
relatively constant, there is often a high degree of
intra- and inter-annual variability from location
to location (Awange et al. 2008).

Tsetse are divided into three subgenus groups
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based on their physiology and general ecology,
with each group requiring different land cover,
temperatures regimes, and moisture levels. Al-
though all three subgenus groups of tsetse occur
within Kenya and the TED Model can be
parameterized to any tsetse subgenus/species
requirements, for the purpose of this study the
TED Model was parameterized to identify
suitable habitat for subgenus Morsitans/Glossina
(also called the morsitans-group). The morsitans-
group, commonly considered the woody savan-
nah tsetse species, has the most expansive spatial
distribution in Kenya. The subgenus Palpalis/
Nemorhina (also called the palpalis-group) is
restricted to the shore of Lake Victoria and along
the Kenya-Uganda border, while the subgenus
Fusca/Austenina (also called the fusca-group),
whose distribution overlaps that of the morsi-
tans-group, is found primarily in isolated patches
of forest and along the Kenya-Tanzania border
(Pollock 1982a, Wint and Rogers 2000). Hereafter,
our reference to ‘‘tsetse’’ will be specific to the
morsitans-group.

Tsetse ecology
Tsetse are one of the few k-strategist insects,

and thus have low fecundity and over all low
mortality rates relative to other insect species
(Leek 1999, Rio et al. 2006). Of particular
importance to tsetse survival is the availability
of ecologically suitable habitat, which must
include acceptable climate conditions and land
cover types (Pollock 1982b, Leak 1999). With
regards to climate, tsetse populations are gener-
ally found in regions with mean annual temper-
atures between 19–308C (Pollock 1982b). As
temperatures increase, the rates at which tsetse
consume fat and water also increase, requiring
the fly to either seek out a host on which to feed
or risk dying of starvation or desiccation (Leak
1999, Hargrove 2001). The probability of survival
drops to 50% when tsetse are exposed to
temperatures greater than ;368C for three hours
(Terblanche et al. 2008), and temperatures greater
than 408C are considered lethal (Knight 1971,
Torr and Hargrove 1999).

Unlike high temperatures, low temperatures
slow tsetse physiology and induce a ‘‘chill coma’’
(Terblanche et al. 2008). The chill coma effect sets
in when temperatures drop below 17–208C,
preventing tsetse from flying, carrying out

normal life activities, and, eventually, leading to
starvation (Mellanby 1936, 1939, Knight 1971,
Hargrove 1980, Pollock 1982b). Colder tempera-
tures will kill tsetse outright, with the probability
of survival dropping to 50% when exposed to
temperatures below ;108C for 3 hours (Ter-
blanche et al. 2008).

Low moisture levels compound the threat of
high temperature by increasing the rate of water
consumption leading to desiccation in adult
tsetse (Leak 1999). A significant negative corre-
lation has been reported between fly populations
and saturation deficits (Nash 1933, Rogers 1979,
Hargrove 2001). However, the question of
whether or not tsetse in dry conditions die from
starvation or desiccation has been debated for
some time (see Nash 1937, Buxton 1955, Bursell
1961, 1963, Rogers 1979, 1990, Hargrove 1980,
2001, Rogers and Randolph 1986, 1991). Regard-
less, it is clear that low moisture levels have a
serious negative impact on tsetse populations,
with optimum saturation deficits between 6.0–
17.3 hPa (Rogers 1979).

To prevent possible starvation/desiccation,
tsetse utilize various micro-habitats provided by
particular land cover types that contain what is
referred to as ‘‘woody vegetation’’ (Leak et al.
2008). Woody vegetation can be generally de-
fined as woody plant material greater than 1–3
cm in diameter, a height of 1–4 meters, and with
a coarse surface (e.g., rough/loose bark) (Austen
and Hegh 1922, Jordan 1986). Tsetse use the
various micro-habitats associated with woody
vegetation (e.g., loose bark, underside of branch-
es or logs, hollows in tree trunks or logs) to
mitigate high temperatures, and provide pre-
ferred moisture levels (Austen and Hegh 1922,
Pollock 1982a, b). When temperatures rise above
;328C, tsetse seek out woody vegetation refuges
(Pilson and Pilson 1967), which can be up to
4.58C cooler than ambient air temperatures (Torr
and Hargrove 1999, Muzari and Hargrove 2005).

METHODS

The tsetse ecological distribution model
To explore the spatio-temporal fluctuations of

tsetse distributions, we constructed the TED
Model, a raster based dynamic species distribu-
tion model (see Guisan and Zimmermann 2000,
Guisan and Thuiller 2005, Peterson et al. 2008,
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Kearney and Porter 2009) that predicts tsetse
presence at a 250m spatial resolution based on
habitat suitability and fly movement rates. The
model outputs individual, binary presence/ab-
sence maps for 16-day periods, from 1 January
2001 to the acquisition date of the most recently
available Moderate Resolution Imaging Spectror-
adiometer (MODIS) remotely sensed data prod-
ucts that are inputs to the model (approximately
one month previous to the current date). At its
simplest, the TED Model can be described in two
separate parts: 1) a spatially explicit fundamental
niche model that identifies all potentially suitable
tsetse habitat (see Guisan and Zimmermann
2000, Peterson et al. 2002, Soberón and Peterson
2005, Keamey and Porter 2009) and 2) a fly
movement model that integrates tsetse distribu-
tions and fly movement rates (Fig. 1).

The fundamental niche model uses four

separate MODIS products: 1) Normalized Differ-
ence Vegetation Index (NDVI) as a surrogate for
available moisture (see Williams et al. 1992), 2)
day land surface temperature (LST), 3) night LST,
and 4) Land Use Land Cover (LULC). Each of the
four data sets was recoded to a binary suitable (1)
vs. unsuitable (0) habitat classification scheme.
These four binary habitat suitability maps are
then combined using Boolean logic to create a
tsetse fundamental niche map for each 16-day
epoch.

Although the first part of the model deter-
mines the fundamental niche of tsetse, the
expansion of suitable habitat might be greater
than tsetse movement rates. To identify the
location of tsetse distributions (i.e., the realized
niche) a fly movement model was coupled to the
fundamental niche model, which expands the
previous tsetse distributions by an assigned fly
movement rate. When tsetse distributions ex-
pand into cells determined ecologically suitable,
the TED Model predicts tsetse to be present at
those new locations. If tsetse distributions ex-
pand into cells that are designated as unsuitable
habitat, then the TED Model predicts tsetse
would not be present at those locations. The
same rules apply for cells that change from
suitable to unsuitable where existing tsetse
distributions were previously predicted, hence
allowing for the contraction of tsetse distribu-
tions when the amount of suitable tsetse habitat
declines. Thus the TED Model produces a unique
tsetse species distribution map every 16 days,
and is able to predict/track tsetse distributions
over time and space.

Data, parameters, and initialization
Moisture.—Representing available moisture in

the TED Model is problematic since no publicly
available, in situ, remotely sensed, or modeled
measure of moisture with a temporal resolution
greater than 16 days and a spatial resolution
equal to or greater than 1km currently exists for
Kenya. Humidity can be predicted using precip-
itation and temperature data, but Williams et al.
(1992) demonstrated that using remotely sensed
NDVI data as a surrogate for humidity outper-
formed predicted humidity data with regards to
modeling tsetse populations. NDVI, the normal-
ized difference ratio of Red and Near-infrared
(NIR) wavelengths (NIR – Red/Nir þ Red),

Fig. 1. The Tsetse Ecological Distribution (TED)

Model Flow Chart; dark grey circles are input

variables, grey squares are conversions/calculations,

light grey ovals are derived auxiliary variables, and the

Kenyan shaped Predicted Distribution is the model

output for each date.
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essentially measures the presence and condition
of green vegetation (Lillesand et al. 2008). If
green vegetation is present and healthy, remotely
sensed NDVI values will be higher than if
vegetation is not present or unhealthy. The
findings of Williams et al. (1992) that NDVI can
be used as a surrogate for moisture data logically
follows since healthy green vegetation generally
requires water to exist. For this reason the TED
Model uses NDVI as a surrogate for available
moisture when predicting suitable habitat.

NDVI data were acquired from NASA in the
form of the MODIS Terra NDVI Vegetation
Indices 250m (MOD13Q1) product. The MODIS
NDVI product is available at 16-day increments,
from 1 January 2001 to approximately one month
from the current date. Since our current study
covered a period of nearly nine years (i.e., 1
January 2001–19 December 2009) 207 scenes of
the MODIS NDVI were downloaded, compiled,
reprojected, and clipped to the borders of Kenya
using the MODIS Reprojection Tool (MRT),
United States Geological Survey (USGS) Earth
Resources Observation and Science (EROS) Cen-
ter, Sioux Falls, South Dakota, USA, and ArcGIS
9.2, Environmental Systems Research Institute
(ESRI), Redlands, California, USA.

Multiple models have used NDVI as a variable
to predict suitable tsetse habitat in the past (e.g.,
Rogers and Williams 1994, Gilbert et al. 2001,
Wint 2001), but these models used NDVI as a
land cover descriptor, not as a surrogate for
moisture. Therefore, the NDVI threshold values
reported by these models are not considered
appropriate for the TED Model. Williams et al.
(1992) reported a Zimbabwe dry season NDVI
threshold value of 0.39 based on several statisti-
cal tests (a linear regression, a non-linear regres-
sion, discriminate analysis, k-nearest neighbor
analysis, and experiments using a neural net-
work). Given that the two species of tsetse
studied in Williams et al. (1992) are two of the
moristans group species found in Kenya, the
woody vegetation types found in Zimbabwe are
similar to those found in Kenya (Vale et al. 1988,
Rogers and Williams 1994, Muzari 1999), and
high synchronicity between NDVI and precipi-
tation events in semiarid environments (Park
2009), we adopted 0.39 as the threshold value for
NDVI-based moisture suitability. Furthermore, to
distinguish our use of NDVI as a surrogate for

moisture as opposed to previous studies that
have used it as a land cover descriptor, the NDVI
variable will henceforth be referred to as the
moisture variable.

Land surface temperatures.—Temperature data
were acquired from NASA in the form of the
MODIS Terra Day and Night LST 1km
(MOD11A2) V005 products. The MODIS LST
products are available at 8-day increments;
however, to match the same temporal resolution
as the MODIS NDVI product (i.e., 16-day), only
scenes with the same date as the NDVI were
used. The LST products were downloaded and
processed in the same manner as the MODIS
NDVI product, with an additional step of filling
‘‘no data’’ gaps caused by the presence of clouds
by using inverse distance weighted (IDW)
interpolation (Li 2004). Scenes containing data
gaps too large to perform an accurate interpola-
tion (e.g., ordinal date 81, 2002) were filled with
an average of the scenes 8 days before and after.

It is generally accepted that temperatures
above ;368C and below ;178C will greatly
hinder normal tsetse activity (Mellanby 1936,
1939, Knight 1971, Hargrove 1980, Pollock 1982b,
Leak 1999, Terblanche et al. 2008). However,
behavior of seeking micro-habitats to cope with
temperature extremes buffers the maximum day
and night temperature threshold by ;48C (see
e.g., Torr and Hargrove 1999, Muzari and
Hargrove 2005). The nighttime minimum tem-
perature threshold was also altered from the
accepted ;178C, below which tsetse enter into a
‘‘chill coma’’ (Mellanby 1936, 1939), down to
108C to account for the diurnal nature of tsetse.
The resulting suitable temperatures were be-
tween 178C and 408C during the day and
between 108C and 408C at night.

Land cover.—The TED Model uses an externally
generated LULC product to account for land
cover. Based on the results of DeVisser and
Messina (2009), the MODIS type 1 Global Land
Cover product with a spatial resolution of 1 km
was used in the TED Model. However, the
MODIS type 1 Global Land Cover was only
produced annually from 2001 to 2004. As a
result, land cover remained static in the TED
Model for the period 2005–2009. We considered,
but rejected, using the MODIS 500m Global Land
Cover product, which has been updated annual-
ly post 2004. The 500m Global Land Cover

v www.esajournals.org 5 Month 2010 v Volume 1(1) v Article0

DEVISSER ET AL.



product grossly overestimated the extent of
grassland in southern Kenya which had a serious
negative effect on the tsetse distributions pre-
dicted by the TED Model in known tsetse
infested regions.

The suitability of the various LULC classes was
based on the methods outlined in Cecchi et al.
(2008), which compared the LULC class descrip-
tions with published land cover requirements for
tsetse (DeVisser and Messina 2009). The LULC
data sets were classified into binary suitable vs.
unsuitable maps.

Fly movement rates.—The rate of tsetse move-
ment can be modeled in two ways: 1) maximum
daily movement rate of an individual fly or 2)
advancement of tsetse populations (Vale and
Torr 2005). An individual fly can move up to 800
m per day (Vale et al. 1984), while fly popula-
tions with a typical 1% growth rate tend to
advance much more slowly at ;11.7 km per year
or roughly 513m per 16 days in what has been
called a ‘‘fly front’’ (Hargrove 2000). Since the
TED Model is designed to predict tsetse distri-
butions as a whole, the potential movement rate
of individual flies is less important. As such, the
fly front was selected to model tsetse expansion
rates. Due to the 250 m spatial resolution of the
TED model, the advancement of the fly front was
parameterized with a movement rate of 500 m
(i.e., an expansion of 2 grid cells from the
previous distribution) every 16 days, rather than
the 513 m estimated by Hargrove (2000).

Model initialization.—The TED Model requires
initialization with a starting tsetse distribution.
Originally the TED Model was initialized using
an existing tsetse distribution map (e.g., 1996 fly
belts). However, due to the influence of an
externally generated tsetse distribution on the
outputs of the TED Model, and the possibility of
excluding potential reservoirs and refugia, the
TED Model was initialized with tsetse present in
all of Kenya. Considering the obvious overesti-
mation of tsetse in Kenya when the TED Model is
first initialized, a one-year initialization period (1
January 2001–31 December 2001) was run before
any outputs from the model were used to
identify tsetse reservoirs and refugia.

Model outputs
Individual scenes and percent probability map.—

The TED Model produced 207 unique tsetse

distribution maps that predict the distribution of
tsetse within Kenya at a 16-day temporal
resolution between 1 January 2001 and 19
December 2009 (the last scene acquisition date
for data used in this paper). Due to the one-year
initialization period (1 January 2001–31 Decem-
ber 2001), only the 184 scenes between (1 January
2002–19 December 2009) were used for analysis.
The total area of tsetse infestation predicted by
each of the 184 individual binary scenes was then
sequentially plotted to analyze their temporal
patterns. The individual scenes were also
summed and divided by 184 (the total number
of scenes) to create a percent probability map of
tsetse presence. This map was then used to
compare the TED Model output to other tsetse
distribution maps and to quantify the sensitivity
of each variable in the TED Model.

Tsetse reservoirs and refugia.—The identification
of tsetse reservoirs was accomplished by exam-
ining the sequentially plotted predicted tsetse
surface area in each scene, and identifying the
scene in each year that predicted the minimum
area. The timings of these eight minimum
infestation area scenes were analyzed to deter-
mine whether they coincided with a particular
season. These eight scenes were combined and
converted to a percent probability map. Loca-
tions with a predicted likelihood of having tsetse
present between 50% and 90% were designated
as tsetse reservoirs, while locations with a
predicted likelihood greater than 90% were
classified as tsetse refugia.

Model assessment and validation
Spatial goodness of fit.—The spatial goodness of

fit (GOF) analysis involved comparing the TED
Model percent probability map to 1) the 1996 fly
belts map (Muriuki et al. 2005, KETRI 2008), and
2) the Food and Agriculture Organization of the
United Nations (FAO)/The International Atomic
Energy Agency (IAEA) combined morsitans-
group 1 km predicted tsetse suitability maps for
Kenya (Wint 2001, DeVisser and Messina 2009).
The comparison of these maps was quantified
through the calculation of a Mapcurves GOF
score, which measures the degree of spatial
concordance between classes of categorical maps
(Hargrove et al. 2006). The Mapcurves GOF
analysis produces a standardized value between
0.0 (no spatial agreement between of classes) and
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1.0 (perfect alignment of map classes). To
facilitate the calculation of a Mapcurves GOF
scores both the FAO/IAEA tsetse distribution
map and the TEDModel percent probability map
were reclassified into ten classes of equal 10%
probability increments.

Model sensitivity.—The sensitivity analysis ex-
amined how sensitive the TED Model was to
changes in the three climate parameters that were
used to identify suitable tsetse habitat (i.e.,
moisture, maximum temperature, and minimum
temperature). Land cover and fly movement
rates were excluded from the sensitivity analysis
since land cover is a nominal variable and can
not be incrementally increased or decreased, and
fly movement rates could only be increase by
relatively large increments of 250m due to the
spatial resolution of the TED Model. To compare
the sensitivity of the TED Model to changes in
the climate parameters, a sensitivity index was
calculated, which compares the percent change
in a parameter of interest to the percent change in
a model’s state variable, resulting in a normalized
dimensionless index value (Lenhart et al. 2002,
Millington et al. 2009). The sensitivity index used
to explore the TED Model’s sensitivity was the
relative sensitivity index (RSI), which compares
the change in the standardized state variable
between two distinct model runs with varying
parameter thresholds (DeVisser 2010) (Eq. 1).

RSI ¼ DYi1&i2=YD

DPi1&i2=PD

where Y is the dependant output state variable, P
is the parameter threshold of the input variable
being analyzed, i1 and i2 are the model runs
being compared, and D are the values associated
with the default baseline model. The resulting
RSI calculated for each parameter was then
classified into one of four categories ranging
from insensitive to extremely sensitive as de-
scribed in Lenhart et al. (2002) (Table 1). A
parameter was deemed insensitive if the RSI was
between 0.00 and 0.05, implying that a change in
the parameter resulted in little to no change in
the state variable. Moderate and high sensitivity
was assigned to RSI values between 0.05 to 0.20
and 0.20 to 1.00, respectively. RSI values greater
than 1.00 imply a proportional change in the state
variable that was greater than the proportional
change in the parameter, thus indicating extreme

sensitivity.
The state variable in the TED Model sensitivity

analysis was the surface area of the percent
probability map above 50%. The NDVI param-
eter threshold of 0.39 was varied by 0.02 (;5%)
to a minimum threshold value of 0.00 and a
maximum threshold value of 0.79. The maximum
and minimum temperature parameter thresholds
of 408C and 108C for night LST and 178C for day
LST were varied by 18C. However, due to the
diurnal nature of tsetse activity, minimum
temperature has different day and night LST
threshold values. Considering that 108C is a
lethal threshold (Terblanche et al. 2008) and
178C is a mobility threshold (Mellanby 1936,
1939), the standardization of the minimum
temperature RSI was performed using only the
nighttime parameter threshold.

The two different threshold values of mini-
mum and maximum temperature present anoth-
er issue since a 18C change at 108C represents a
10% change in the parameter threshold, while at
408C a 18C change represents a 2.5% change. The
influence of this difference on the calculation of
the RSI would cause direct comparison of model
sensitivity to minimum and maximum tempera-
ture to be inappropriate. To avoid this predica-
ment, a 18C change in both minimum and
maximum temperature was standardized to a
4% change, the equivalent of a 18C change if both
default parameter thresholds were set at 258C
(i.e., halfway between the two original threshold
values). Thus minimum and maximum temper-
ature RSI values were calculated using Eq. 2:

RSI ¼ DYi1&i2=YD

DPi1&i2 3 0:04

where Y is the dependant output state variable, P
is the parameter threshold of the input variable
being analyzed, i1 and i2 are the model runs
being compared, and YD is the state variable
value associated with the default baseline model.

Table 1. Sensitivity classes adapted from Lenhart et al.

(2002).

Sensitivity index Class Sensitivity

0.00 � SI , 0.05 I insensitive
0.05 � SI , 0.20 II moderate
0.20 � SI , 1.00 III highly
SI � 1.00 IV extremely
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Tsetse reservoir field sampling.—Unfortunately,
the use of previously collected fly capture site
data (e.g., KETRI 2008) is of limited use in the
validation of the TED Model, since very little
information is available outside of existing fly
belts; specifically the absence of tsetse has not
been sampled or recorded. For this reason seven
sites were selected for monitoring tsetse pres-
ence/absence in potential reservoir locations
predicted outside of traditional fly belts. The
selection of sites outside of traditional belts was
important to test not only the reservoir, but also
for the presence of flies in previously unidenti-
fied areas.

The sites selected were near the towns of
Machakos, Mwingi, Namanga, Meru, Nanyuki,
Eldama Ravine, and Kitale. The sampling used
the minimal survey method where a survey is
carried out once to determine the distribution of
tsetse species (Gamba 2009). Random and strat-
ified methods were used in the survey after the
most suitable locality accessible within the
predicted reservoir was identified. We used the
unmodified biconical traps (Challier and Lavois-
ier 1973) at all the sites. All traps were baited
with sachets containing a combination of phenols
and acetone, dispensed at 500mg/h from glass
bottles with a 2 mm aperture at the top (Gamba
2009). The traps were greased to prevent ants
from damaging the captured tsetse. The trapping
period in each location was 4 nights and the
number of traps used ranged from 2 to 10 per site
(Gamba 2009).

RESULTS

Model outputs
Excluding the one-year initialization period,

the TED Model produced 184 binary tsetse
distribution maps, one for each 16-day period
from 1 January 2002–19 December 09. The
cumulative size of the areas predicted to have
tsetse present was plotted over time to demon-
strate that tsetse distributions fluctuate both at
intra-annual and inter-annual temporal resolu-
tions (Fig. 2). The maximum area of infestation
(67,378 km2) occurred during the 2002 long rains
(25 May 2002), while the minimum area of
infestation (16,082 km2) was predicted at the
end of the 2009 cool, dry season (30 September
2009). The fluctuations in tsetse distributions

predicted by the TED Model correspond very
well with seasonal weather patterns (Fig. 3). Fly
populations expand with the onset of the long
rains (roughly the beginning of March), contract
at the start of the cool dry season (roughly the
beginning of June), expand again with the
commencement of the short rains (roughly late
October), and contract during the hot dry season.

To assess the overall distributions of tsetse
predicted by the TED Model, the individual
scenes were summed and divided by 184 (the
number of scenes) to produce the tsetse percent
probability map (Fig. 4). Due to the use of the fly
front in the TED tsetse movement model, the
TED Model percent probability map displays the
percent likelihood of encountering high tsetse
population densities at any time between the
beginning of 2002 and the end of 2009. Since the
TED Model only identifies areas of higher
population densities, in reality one should expect
to find tsetse in lower densities outside the
predicted TED Model distributions. However,
the exact fly population densities and distance
from the edge of the predicted tsetse distribu-
tions will vary significantly from location to
location.

Tsetse reservoirs and refugia
Analysis of the country-wide timing of the

tsetse reservoirs and refugia showed that in 6 out
of the 8 years, the minimum predicted annual
infested area occurred at the end of the cool dry
season (i.e., mid- to late-October). The two
exceptions were 2006 and 2007, when the
smallest predicted annual distribution occurred
during the hot dry season (i.e., end of February).
The variability in the timing of the country-wide
annual minimum predicted tsetse distributions
spurred us to examine the temporal and spatial
patterns of predicted tsetse expansion and
contraction at finer scales.

Two relatively isolated distributions (i.e., a low
probability of the predicted tsetse distribution
being connected with a neighboring tsetse
population) were identified and named Mwingi
and Loiya after nearby towns (Fig. 5). The
cumulative predicted area of tsetse infestation
was plotted over time for both of these isolated
distributions (Fig. 6). The Mwingi distribution
was predicted to contract during the cool dry
season and generally expand during the rest of
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the year. The Loiya distribution predicted expan-
sions during the wet seasons, contractions during
the dry seasons, with the annual minimum
infested area occurring at the end of the hot dry
season.

Using the tsetse reservoir and refugia identifi-
cation guidelines, the Mwingi distribution had
approximately 33.4 km2 of reservoir habitat and
7.4 km2 of refugia habitat at the end of the cool
dry season (roughly the beginning of October)
(Table 2). The Loiya distribution displayed larger
tsetse reservoir and refugia than the Mwingi
distribution, with 121 km2 identified as reservoir
habitat and 19.3 km2 of refugia habitat. The Loiya
distribution exhibited an establishment date
range from the middle of February to the
beginning of April.

Model assessment and validation
Spatial goodness of fit.—The spatial GOF anal-

ysis comparing the TED Model percent proba-
bility map with the 1996 fly belts map resulted in
a Mapcurves GOF score of 0.560 (Table 3), with
approximately 70% of the TED Model predicted

distributions falling within the boundaries of the
fly belts. The comparison between the TED
Model and the FAO/IAEA distributions resulted
in a Mapcurves GOF score of 0.126. Comparing
the FAO/IAEA distribution map with the 1996 fly
belts map resulted in a GOF score of 0.650.
Approximately 60% of the FAO/IAEA tsetse
distributions fell within the boundaries of the
fly belts.

Model sensitivity.—The sensitivity analysis ex-
amined how sensitive the TED Model was to
changes in the three climate parameters used to
identify suitable tsetse habitat (i.e., moisture,
maximum temperature, and minimum tempera-
ture). Changes in these climate parameter thresh-
olds can be framed in two ways: 1) tsetse
tolerance for a variable changed (i.e., tsetse are
more or less sensitive to changes in temperature/
moisture), or 2) climate conditions changed (e.g.,
regional increase or decrease in temperatures/
moisture). Here, we assume species physiology is
constant, and therefore, the sensitivity analysis is
framed as how sensitive predicted tsetse distri-
butions are in lieu of a uniform regional change

Fig. 2. The surface area predicted to have tsetse present by the TED Model between the beginning of 2002 and

the end of 2009. The timing of the long and short rains is denoted in grey, and the mean predicted surface area

(i.e., 38,733 km2) is denoted with slashed line.
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in climate conditions.
The results of the sensitivity analysis per-

formed on the maximum temperature variable
showed an inverse relationship with predicted
tsetse distributions (i.e., an increase in maximum
temperature resulted in smaller area tsetse
distributions) (Fig. 7). Maximum temperature
produced RSI values ranging from 0.00 (class I)
to 3.96 (class IV), with the highest RSI values
being associated with a decrease in the parameter
threshold (i.e., increase of regional maximum
temperatures). The TED Model varies from
highly sensitive (class III) to moderately sensitive
(class II) in response to 1) approximately a 78C
decrease in maximum temperatures when tsetse
distributions no longer increase in area; or 2) a
128C increase in maximum temperatures when
the tsetse distribution is reduced to nearly 0 km2.

The results of the sensitivity analysis per-
formed on the minimum temperature variable
showed a synchronistic relationship with pre-
dicted tsetse distributions (i.e., an increase in
minimum temperature resulted in larger-area
tsetse distributions) (Fig. 7). The minimum
temperature variable produced RSI values rang-

ing from 0.13 (class II) to 7.48 (class IV), with the
highest RSI values being associated with a
decrease in the parameter threshold (i.e., a
decrease of regional minimum temperatures).
The TEDModel shifts from highly sensitive (class
III) to moderately sensitive (class II) only after a
208C increase in minimum temperatures, when
tsetse distributions no longer increase in size.
But, the model never reaches moderate sensitiv-
ity before tsetse distributions are reduced to
nearly 0 km2 at an 88C decrease in regional
minimum temperatures.

The results of the sensitivity analysis per-
formed on moisture showed a synchronous
relationship with predicted tsetse distributions
(i.e., an increase in moisture resulted in expanded
tsetse distributions) (Fig. 7). The moisture sensi-
tivity analysis produced RSI values ranging from
0.00 (class I) to 4.75 (class IV), with the highest
RSI values being associated with a decrease in
the parameter threshold (i.e., increase of regional
available moisture). The TED Model only be-
comes moderately sensitive (class II) with ap-
proximately a 95% decrease or 70% increase in
NDVI parameter thresholds, at which point the

Fig. 3. The intra-annual variability of tsetse distributions predicted by the TED Model, with four seasons

denoted to emphasize the seasonal patterns of tsetse expansion and contraction.
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predicted tsetse distributions have either reached
their maximum distribution or are reduced to
nearly 0 km2.

Tsetse reservoir field sampling.—Our trapping
efforts failed at all seven sites. However, in one
instance tsetse flew into our field vehicle.
Interviews with veterinary service providers
and local herders confirmed the recent presence
of tsetse at all sites. Trypanosomiasis in cattle was
present at all but the Machackos site. In the
Mwingi and Namanga sites animals that had
been treated with trypanocides within the previ-
ous two weeks were shown to the field team.

DISCUSSION AND CONCLUSION

Model assumptions and uncertainty
Arguably, the largest source of uncertainty in

the TED Model is the spatial resolution of the
data used. All the outputs from the TED Model
are at a spatial resolution of 250m, however, only
the NDVI data are collected at that spatial
resolution, while the temperature and LULC
data are both a coarser 1km spatial resolution.
The underlying assumptions in using remotely
sensed data within the TED Model are that
conditions are uniform within a pixel, and that
all suitable tsetse habitat can be identified using
the MODIS products at 250m and 1km resolu-
tions. These assumptions are surely violated
when one considers that a patch of a particular
plant species (e.g., Cordia sinensis) can provide
suitable habitat for tsetse and be much smaller
than 250m2. Thus, conditions within some pixels
are not uniform and some suitable habitat is
undetectable at this spatial resolution. Hence,

Fig. 4. The TEDModel percent probability map overlaid on a physiographic map of Kenya to show the location

of predicted tsetse distributions.
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users of tsetse distributions predicted by the TED
Model must understand that they very likely
exclude scattered and sparse tsetse populations
that rely on patches of suitable habitat smaller
than 250m2. However, a single C. sinensis plant or
a very small patch of woody vegetation may not
provide enough suitable habitat to sustain a
tsetse population over the long-term.

In addition to the TED Model not being able to
identify small patches of suitable tsetse habitat, it
also does not identify the spatial location of tsetse
that move at a rate faster than the fly front rate of
expansion. However, the TED Model was not
designed to account for individuals or the

maximum possible extent that tsetse could
expand during seasonal periods hence the use
of the fly front expansion model. The term ‘‘fly
front’’ and the associated rate of expansion is
based on the previous research of Hargrove
(2000), which uses the fly front to predict the
linear re-invasion of tsetse into previously con-
trolled regions (e.g., flies re-invading valley from
one end to the other), essentially as a ‘‘wave’’ of
tsetse. While in the TED Model the fly front
expansion out from a tsetse reservoir or refugia
may function more as a ‘‘ripple’’ of tsetse
emanating out from a source into seasonally
suitable habitat. Given that tsetse are k-strategists

Fig. 5. The Mwingi and Loiya subset locations and predicted tsetse distributions. Light grey indicates no tsetse

were predicted; grey indicates the maximum extent that tsetse were predicted to reach between 2002 and the end

of 2009; dark grey indicates a tsetse reservoir; black indicates a tsetse refugium.

v www.esajournals.org 12 Month 2010 v Volume 1(1) v Article0

DEVISSER ET AL.



the wave versus ripple fly front would be

associated with different populations densities,

which in turn would affect the expansion rates.

However, again the TED Model was not de-

signed to accurately predict tsetse distributions

as a whole, rather to identify the spatial location

and timing of tsetse reservoirs and refugium.

Another assumption related to fly movement

in the TED Model is that tsetse host species are

uniformly present throughout Kenya at all times.

Since both wild and domestic hosts migrate at

Fig. 6. The surface area of tsetse infestation predicted by the TED Model in the Mwingi and Loiya regions

between the beginning of 2002 and the end of 2009. The timing of long and short rains is denoted in grey.

Table 2. The Mwingi and Loiya annual minimum and maximum predicted tsetse distributions.

Year

Mwingi distribution Loiya distribution

Annual minimum Annual maximum Annual minimum Annual maximum

Ordinal date Area (km2) Ordinal date Area (km2) Ordinal date Area (km2) Ordinal date Area (km2)

2002 273 43 97 1,176 49 105 353 1,000
2003 273 36 145 774 65 127 257 981
2004 273 52 129 1,030 81 343 353 1,145
2005 289 63 161 1,445 65 273 273 1,335
2006 289 142 161 901 49 88 353 774
2007 273 178 145 1,488 97 482 289 1,340
2008 273 78 145 1,880 65 195 337 1,476
2009 273 31 33 741 81 238 193 787
Reservoir area 33 792 121 803
Refugia area 7 52 19 250
Total 40 844 140 1,053

Table 3. Ground truth comparison GOF scores.

Maps compared GOF score

TED Model vs. 1996 Fly Belts 0.560
FAO/IAEA vs. 1996 Fly Belts 0.650
TED Model vs. FAO/IAEA 0.126
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various time scales for a variety of reasons
(Homewood et al. 2001), and tsetse may be
forced to follow the host species, this assumption
is a source of uncertainty in the predicted tsetse
distributions. However, the primary factor in
animal migration is the search for food (Eloff
1959), a limited resource in the semi-arid regions
of Kenya, especially in the dry seasons. NDVI,
our surrogate for moisture, could also be used as
a surrogate for forage quality, a major constraint
on animal populations.

Model assessment and validation
Spatial goodness of fit.—The spatial GOF anal-

ysis showed that the level of agreement between
all three maps is very low and thus asserts that
the maps do not agree where tsetse are located.
The disagreement between the three maps is
most likely attributable to the differences in what
each map represents and how each map was
constructed (i.e., species distribution model,
logistic regression predicting the fundamental
niche of tsetse, and fly capture sites/historical
distributions). The use of a fly movement model
coupled to a fundamental niche model in the
TED Model means that only tsetse populations
with access to some ecologically suitable habitat
year round (e.g., a reservoir) will be predicted
(i.e., realized niche). Conversely, the FAO/IAEA
map claims to predict the percent likelihood of
encountering tsetse in a given location, but more
precisely predicts the likelihood of encountering
suitable tsetse habitat (i.e., the fundamental
niche). Without the incorporation of a fly

movement model, the logistic regression model
used to construct the FAO/IAEA map cannot
take into account tsetse movement rates. Thus to
make the claim to predict the likelihood of
encountering tsetse in a given location, the
FAO/IAEA model assumes if tsetse habitat is
present, then tsetse are present. By making this
assumption, the FAO/IAEA map likely over
estimates the realized niche of tsetse, essentially
producing a product similar to the TED Model’s
fundamental niche output (Fig. 8).

The 1996 fly belts map, although based on field
data, is essentially a polygon drawn around
historical tsetse populations and point sampled
fly capture sites. Unfortunately this method of
mapping tsetse distributions has the unintended
effect of presenting tsetse distributions as static in
both space and time. Furthermore, the 1996 fly
belts map displays the distribution of all eight
tsetse species in Kenya, while both the TED
Model and FAO/IAEA distribution maps focus
on the morsitans-group. Although the distribu-
tions of the other four tsetse species are either
relatively small in size or overlap regions where
Glossina subgenus Morsitans species are found,
the addition of the other species may lower the
level of agreement.

Another source of disagreement between the
TED Model and the other two reference maps is
the use of the fly front, which induces the TED
Model to only predict locations with high tsetse
population densities. A solution to this problem
could be to simply increase the fly movement
rates, essentially buffering the predicted tsetse

Fig. 7. Combined and standardized parameter threshold values and the corresponding surface area state

variable used in the sensitivity analysis.
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distributions (Fig. 8). However, this may lead to
an over estimation of tsetse distributions, the
exploration of which is beyond the scope of this
manuscript.

Given the differences in the TED Model, the
FAO/IAEA, and the 1996 fly belt maps, in
particular the lack of accounting for fly move-
ment over space and time, a great deal of
disagreement between these products should be
expected. However, the lack of agreement be-
tween the TED Model and the existing reference
data might highlight the unsuitability of the
existing FAO/IAEA and 1996 fly belts maps for
mapping space/time dependent tsetse distribu-
tions. Curran et al. (2000) outline two underlying
premises to justify the use of remotely sensed
data in the modeling of vector borne diseases.

First, the spatial distributions of vector-borne
diseases are related to the habitat of the vector
(Pavlovskii 1966). Second, remotely sensed data
can be used to provide information on land
cover/climate and, by association, the habitat of
species (Innes and Koch 1998). As a result,
remotely sensed data can provide useful infor-
mation on the spatial distribution of vector-borne
diseases (Hay et al. 1997). Our study asserts an
additional premise; by using a time-series of
remotely sensed data, the user is able to gain
information on the temporal nature of vector-
borne diseases. Assuming that the remotely
sensed data and parameters used in the TED
Model are accurate, then the TED Model should
correctly predict the spatio-temporal location of
tsetse distributions.

Fig. 8. The maximum extent of tsetse distribution during the 8-year analysis period with the fly movement rate

set at 500 m/16 days (i.e., the default value), 750 m/16 days, 1,000 m/16, and 2,000 m/16 days, overlaid with the

output from the default TED fundamental niche model and the 1996 fly belts.
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Model sensitivity.—The sensitivity analyses
demonstrated that the tsetse distributions pre-
dicted by the TED Model were extremely
sensitive to changes in the climate parameters.
The sensitivity analyses also explored the impact
that each climate variable could have in limiting
or expanding the predicted tsetse distributions
based on uniform regional changes in climate
conditions. Although this scenario of uniform
regional changes in climate is unlikely, the
general relationships between tsetse and the
climate variables that determine habitat suitabil-
ity should hold true.

Maximum temperature was shown to have the
greatest potential to limit tsetse distributions.
This is of particular interest given a projected
increase of roughly 1.78C by 2050, and 48C by
2100 for East Africa by the Intergovernmental
Panel of Climate Change’s (IPCC) A1B scenarios
(Mitchell et al. 2004, Boko et al. 2007, Christensen
et al. 2007). If these projections hold true, then a
decrease in tsetse populations can be expected.
However, this would only occur in localities
where the maximum temperatures are at or near
408C currently, which is mostly in the lowlands
below 1,500 meters elevation.

In the highland regions, an increase of mini-
mum temperature by 1.78C to 48C could poten-
tially cause an expansion of tsetse into these
landscapes. In southern Africa, minimum tem-
perature is considered to be the most influential
climate variable limiting tsetse distributions
(Leak 1999). Due to Kenya’s location on the
equator, minimum temperature only affects
tsetse distributions in the highland areas around
Mount Kenya and the rim of the rift valley. The
potential spread of tsetse into higher elevations is
of particular concern because the Kenyan high-
lands are home to the majority of Kenyans, and
the livestock in this region are generally highly
susceptible to trypanosomiasis.

The sensitivity analysis performed on moisture
showed that a uniform increase in regional
moisture conditions has the greatest potential to
expand predicted tsetse distributions in the TED
Model. Current climate change projections call
for potentially higher precipitation totals, but
more variability in rainfall patterns in East Africa
(Christensen et al. 2007). Since moisture was
calculated to have the greatest potential to
expand tsetse distributions in the sensitivity

analysis, increased precipitation levels could
increase the overall area of tsetse infestation.
However, increased rainfall during the wet
season combined with the higher projected
temperatures may not translate into higher
available moisture levels during the dry seasons.

Field sampling.—The failure of the field sam-
pling was likely due a severe drought in Kenya
brought about by the weak long rains of 2008,
followed by failed short rains in 2008 and long
rains of 2009 (Gettleman 2009, KFSSG 2008,
KFSSG 2009a, b). The drought likely restricted
tsetse distributions to refugium habitat. Given
that the ability of the TED Model to predict tsetse
distributions is limited to approximately one
month prior to the current date (i.e., the most
recent MODIS data), and the site selection took
place roughly two months before the field
sampling, we unfortunately sampled within the
predicted tsetse reservoirs rather than refugia.

In addition to the sampling of reservoirs rather
than refugia, the inability of current trapping
technology to effectively sample low-density fly
populations may have contributed to the lack of
trapped flies (Kgori et al. 2006). Normally in the
dry season, tsetse population densities are low
(Brightwell et al. 1992); during prolonged
droughts, tsetse densities are even lower. This
severe drought likely reduced fly population
densities to such a low level that a long-term
intensive monitoring operation covering the
whole reservoir area would be needed to
conclusively test whether or not tsetse were
present (Leak et al. 2008).

Despite the field sampling, the visual observa-
tion of flies in a few locations in conjunction with
the interviews of local veterinary service provid-
ers and local (i.e., non-migratory) herders who
confirmed transmission of animal trypannoso-
miasis in 7 of the 8 sites strongly suggests the
presence of tsetse. While the mechanical trans-
mission of trypanosomiasis by non-tsetse insects
is a remote possibility, such transmission de-
pends on the type of trypanosomes and specific
alternative vectors, and neither is traditionally
found in any of our sampling sites (Desquesness
and Dia 2003). Regardless of the drought
negatively impacting our field sampling endeav-
ors, the TED Model has now incorporated the
predicted drought tsetse distributions, which led
to the distinction between reservoirs and refugia
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and increases the accuracy of future predictions.

Trypanosomiasis, tsetse, and the TED Model
African trypanosomiasis is a neglected tropical

disease spread by the tsetse fly. Most efforts to
control trypanosomiasis have focused on tsetse;
however, such efforts have relied on fly belt
maps to identify where to target tsetse. Fly belts,
although useful in delineating where tsetse were
historically found, do not account for seasonal
variation in tsetse distributions. All other tsetse
models predict tsetse distributions at a particular
moment in time despite numerous studies that
discuss the seasonal expansion and contraction of
tsetse populations (e.g., Austen and Hegh 1926,
Nash 1933, Bursell 1956, Brightwell et al. 1992,
Hargrove 2001, Odulaja et al. 2001, Bett et al.
2008). Since tsetse distributions fluctuate over
space and time, a dynamic realized niche/species
distribution model that predicts when and where
fly reservoirs occur will be useful to control
operations for many reasons including: 1) reduc-
tions in cost by focusing on smaller areas
identified as reservoirs and refugia; 2) improved
ability of control efforts to target flies; and 3)
operating in small reservoirs/refugia minimizes
the environmental impacts associated with con-
trol campaigns.

The TED Model tracks both spatial and
temporal fluctuations in predicted tsetse distri-
butions in Kenya. A strong seasonal pattern was
apparent in the country-wide expansion and
contraction of suitable tsetse habitat. By plotting
the cumulative predicted tsetse infestation area
over time, the timing of constrained tsetse
populations was identified. However, due to
fluctuations in the ITCZ and the variety of
physiographic features and climate regions in
Kenya, the timing, duration, and climate condi-
tions that influence the amount of suitable tsetse
habitat vary across space making local analyses
necessary. For this reason, two subsets of the
countrywide data in the form of relatively
isolated predicted tsetse distributions were ex-
tracted and used to identify tsetse reservoirs and
refugia at a finer spatial scale. The results of the
Mwingi subset predicted tsetse expansion during
the short rains, a slight contraction during the hot
dry season, continued expansion during the long
rains, and a dramatic contraction in tsetse
distributions during the cool dry season. The

predicted slight decrease in tsetse distributions
during the hot dry season was surprising, but
may be attributable to the local hilly topography
and high elevation providing cooler tempera-
tures than the surrounding plains. The TED
Model predicted that the Loiya tsetse distribu-
tions would generally follow the expansion and
contraction patterns of Kenya as a whole, with
expansion of tsetse in the wet seasons and
contraction during the dry seasons. The annual
minimum predicted tsetse distributions in the
vicinity of Loiya occurred in the hot dry season,
but unlike the Mwingi distributions, the timing
of constrained tsetse distributions was more
variable.

Regardless of whether the most constrained
tsetse distributions were predicted to occur in the
hot dry or the cool dry season, the identification
of the tsetse reservoirs and refugia habitats
demonstrated the value of studying seasonal
patterns of tsetse distributions. The maximum
annual predicted tsetse distributions occupied
844km2 in the Mwingi region (;20 times larger
than the reservoirs and refugia combined), and
1,053km2 in the Loiya region (;7.5 times larger).
Due to the dramatic difference in area, the cost of
implementing control techniques inside the
reservoirs and refugia vs. the maximum annual
predicted distribution would be greatly reduced.
In addition to the advantage of reducing the
treatment area and associated costs, tsetse are k-
strategists and rely on high survival rates to
compensate for low reproductive rates. By
reducing the tsetse population that would nor-
mally survive a seasonal fluctuation in habitat
(e.g., the dry season), the residual population is
unable to quickly reproduce enough offspring to
allow for normal distribution expansion when
suitable habitat does become available (e.g., the
wet season).

Furthermore, the ability of the TED Model to
predict the location and timing of tsetse reservoir
and refugia habitat will improve with each
additional year of data. Over time, a distinction
between the truly critical reservoir locations and
the sporadically suitable habitat will become
apparent. Of particular importance is the TED
Model’s identification of tsetse refugium habitat,
which represents area critical to tsetse survival
during periods of extreme climatic events. One
such extreme event captured by the remotely
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sensed data used in the TED Model was the 2009
drought, which for parts of Kenya was the worst
drought in living memory (Western 2009).
Although drought events are wholly undesirable,
they do offer the potential to implement a
smaller-scale control campaign inside identified
tsetse refugia, with possibly even greater control
efficacy than that of a non-drought year.
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